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ABSTRACT

Fast parallel algorithms are presented for updating connected components and
bridges of an undirected graph when a minor change has been made to the graph, such
as addition or deletion of vertices and edges. The machine model used is a parallel ran-
dom access machine which allows simultaneous reads but prohibits simultaneous writes
into the same memory location. The algorithms described in this paper require O(log n)
time and use O(n’) processors. These algorithms are efficient when compared to previ-
ously known algorithms for finding connected components and bridges that require
O(logzn) time and use O(n’) processors. The previous solution is maintained using an in-

verted tree (a rooted tree where a node points towards its parent) and after a minor
change the new solution is rapidly computed from this tree.
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1. Introduction

Efficient algorithms for a variety of graph problems have been developed in past

(see [2] for an extensive bibliography). However, one aspect of this algorithmic approach

to graph theory has not been dealt with extensively. This aspect is concerned with
recomputing the properties of a graph after incremental changes have been made to it
such as addition and deletion of edges and vertices of the graph. Such recomputations
are also referred to as updating graph properties. Incremental changes made to a graph
model dynamic behavior of the underlying system that it represents. If such incremental
changes are minor (such as deletion and addition of an edge or vertex) then it should be
possible to construct efficient algorithms to recompute the properties of the graph when
compared to algorithms that do not use any of the previous information. Such algo-
rithms that make use of the previous solution (and possibly some additional information)
are termed incremental algorithms, while the algorithms for initial computation of graph
properties are referred to as start-over algorithms in [1]. The kinds of minor
modifications that are considered here are as follows. First, a vertex may be added along

with the edges incident on it. Second, an individual edge may be deleted or added.

We can characterize incremental graph algorithms in terms of stages. The first
stage is to determine what part of the solution is unaffected by the graph change. This
is important as substantial gains can be made by avoiding the recomputation of the
unaffected part of the solution. The second stage is the actual recomputation of that
part of the solution which is affected by the minor graph change. This stage can be
implemented efficiently by making use of the previous solution and possibly some auxili-

ary information that is generated during the initial computation of the solution. This in

turn leads us to a third stage which consists of updating the auxiliary information.
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When we compare the computational complexity of an incremental algorithm to that of
start-over algorithms we need to consider the complexity of all three stages of the incre-
mental algorithm. Our objective is to design incremental algorithms that are efficient

when compared to start-over algorithms.

An important aspect of incremental algorithms is the design of data structures to
store the previous solution as well as some auxiliary information that is generated during
the initial computation. Such data structures should provide rapid access to the neces-
sary information for efficient updates of the solution. As we will see later on our update
algorithms require fast identification of the vertices that belong to two different subtrees
that are created by deleting an edge from the tree. For an inverted tree (a rooted tree
where a node points towards its parent) these computations can be done in parallel in
O(log n)™* time on our model of computation (see [12]). It was shown in [§] that an
inverted spanning tree can be used for parallel update of a minimum spanning tree in
O(log n) time. In this paper we show that some more graph properties such as connected
components and bridges can be updated in O(log n) time using an inverted spanning tree
of the graph. We store connected components and bridges using inverted trees. Our
algorithms ensure that these trees are maintained as inverted trees after successive

updates.

Our model of computation is the unbounded parallel random access machine
(PRAM). We assume that all processors have access to a common memory and that
simultaneous reads from the same location are allowed but simultaneous writes to the
same location are prohibited. Efficient algorithms have been developed for several graph

problems on this particular model of parallel computation [4-7 and 8-11|. These algo-

i Throughout this paper, we use log n to denote [loggn]
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rithms provide a standard with which we compare the complexity of our incremental

algorithms.

The rest of the paper is organized into four sections. In Section 2 we describe some
graph-theoretic preliminaries adopting the framework in [14]. In Section 3 we describe
the update algofiphm for connected components. The update algorithms for bridges and

bridge-connected components are described in Section 4.

2. Preliminaries

In order to describe our algorithms to update graph properties we now present

some graph theoretic preliminaries.

Let G=(V,E) denote a graph where V is a finite set of vertices and E is a set of
pairs of vertices called edges. If the edges are unordered pairs then G is undirected else
it is directed. Throughout this paper we assume that V={1,2,...,n}, [V|=n and |E|=m.
We denote the undirected edge from a to b by (a,b) and the directed edge between them
by <a,b>. We say that an undirected graph G is connected if for every pair of vertices
u and v in V, there is a path in G joining u and v. Each connected maximal subgraph
of G is called a component of G. An adjacency matrix A of G is an n X n Boolean matrix
such that A[u,v|=1 if and only if (u,v) € E. A tree is a connected undirected graph with
no cycles in it. Let T=(VJ E ) be a directed graph. T is said to have a rootr, if r ¢ \'
and every vertex v ¢ V' is reachable from r via a directed path. If the underlying
undirected graph of T is a tree then T is called a directed tree. If the edges of T are all
reversed then the resulting graph is called an inverted tree. An inverted spanning tree
(IST) and an inverted spanning forest (ISF) are defined similarly. We denote an
undirected path from vertex a to vertex b by [a-b| and directed path by {a—b]. We say

that vertex w is an ancestor of vertex v if w is on the path from v to the root of the

Cafer e 2 o
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tree. Let T be a directed tree with u,ve\/. Then the lowest common ancestor
(LCA(u,v)) of u and v in T is the vertex w ¢ V' such that w is a common ancestor of u

and v, and any other common ancestor of u and v in T is also an ancestor of w in T.

As we will see later on, our update algorithms require the paths from all vertices to
the root in an inverted tree. Tsin and Chin [14] have described a technique due to
Savage [10| to compute all such paths. For completeness we now describe their tech-

nique.

Let T=(V' ,E' ) be an inverted tree with V' ={1,2,...,n} and |V' |=n. Let r be the
root of this tree. For a directed edge <a,b> we say that vertex b is the father of vertex

a.
Definition: F:V' =V’ is a function such that F(i)=the father of vertex i in T for izr
and F(r)=r.

The function F can be represented by a directed graph F which can be constructed

from T by adding a self-loop to the root r.

From the function F, we define FX, k>0 as follows.

Definition: F&:.V' =V’ (k>0) such that F%i)=i for all i ¢ V' and F¥(i)=F(F (i) for

allie V' and k>0.

If i is a vertex in T, F¥(i) is the k*" ancestor of i in the inverted tree.
Definition: For each ie V', depth(i)=min {k|F*(i)=r and 0 < k <n}.

Lemma 2.1: Given the function F of an inverted tree, FX can be computed in O(log n)

time using O(n?) processors.
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Fig. 2.1

Proof: We compute the function F* by successive compositions of functions F' (i<k)
that have been determined in previous iterations. The number of ancestors of a vertex
that are marked in each iteration increases by a factor of two. Since a vertex can have at

most n-1 ancestors, we need O(log n) iterations to mark all ancestors. To do the ith
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iteration in constant time we require 2'n processors. As there are log(n-1)-1 iterations,

we require O(n®) processors. |

The actual computations of FX(i) (1<i<n, 1<k<n) are performed in an array F*
in which F*[i,k] contains F¥(i). Once the F* array is computed, depth(i) (1<i<n) can
be found by performing a binary search on the i*® row. We search for the leftmost
occurrence of r. This takes log n time by assigning a processor per row. However, it can
be done in constant time by assigning a processor to each element in F*. This is done as
follows. Every processor compares its element with the elements in its left and right
neighbors. There is exactly one processor which does not have all the three elements
identical or distinct and this processor locates the leftmost occurrence of r. The depth

information is stored in a one-dimensional array D*.

After the computations for D* are finished, each row of F* is right shifted so that
all the r’s except the leftmost one are eliminated. As a consequence, the rightmost
column of the array contains only the root r. Fig. 2.1 illustrates an inverted tree and its

array F* after the rows have been shifted right.

Lemma 2.2: We can compute the lowest common ancestors of all vertex pairs in the

inverted tree in O(log n) time using O(n?) processors.

Proof: We make use of the array F* to design a parallel algorithm for finding the
lowest common ancestors. For an n vertex graph there are "C, (the number of unor-
dered pairs of n elements) vertex pairs, that is O(n®) pairs. Let a and b be a vertex pair.
If ¢ is their lowest common ancestor, then row a and row b of F* will have identical con-

tents for colummn n-1, column n-2,..., down to the column containing ¢. After this

column the contents of rows a and b differ. As a result, to determine ¢, we can perform
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a binary search on row a and row b simultaneously in the following way. If the two
entries being examined in row a and row b (in the same column) are different, the search
is continued on the right half, otherwise it is continued on the left half. It takes (log
n)+1 time steps to find ¢ with one processor. Therefore we need O(n?) processors to find

the lowest common ancestors of all vertex pairs. |

Having obtained the lowest common ancestor we can now identify the unique path
between any two vertices (passing through their lowest common ancestor). We now

describe our parallel algorithms for updating connected components.

3. Connected Components

The problem of updating connected components of a graph deals with recomputing
the sets of vertices, one for each component, after an incremental change has been made
to the graph. The start-over algorithm for finding connected components [6] does not
compute these sets directly but outputs a functioln R.:V—V such that R(i) is the
representative vertex of the connected component of G to which the vertex i1 belongs.

Incremental algorithms for updating connected components update the function R..

Cheston [1] in his thesis has compared several sequential algorithms for updating
connected components. Even and Shiloach {3] have described a sequential algorithm for
an on-line edge deletion update of connected components. Hirschberg et al. [6] have
described a parallel algorithm for computing connected components on a PRAM that

requires O(log®n) time and uses O(n?) processors.

Our algorithms for the edge update as well as vertex insertion problem require
O(log n) time and use O(n?) processors. We assume that the update algorithms operate
on an inverted spanning forest (ISF) for the graph. Using a technique due to Tsin and

Chin [12] the start-over algorithm for finding the connected components can be modified
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to generate an ISF for the graph that contains one IST for each connected component of
the graph. The representativé vertex for each component is the root of the correspond-
ing IST. The algorithms described in this section first update the ISF and then compute
the array F* . (See Section 2.) The last column of F* specifies the updated function R,

which in turn determines the new connected components.

Edge Update Algorithms

We now describe our algorithm to reconstruct the new ISF after an edge has been

deleted or added into the underlying graph.

If the edge [say, (x,y)] to be deleted is not in the forest then the forest remains
unchanged. On the other hand if (x,y) belongs to one of the trees in the forest then that

particular tree can be reconstructed as follows.

1. Delete the tree edge (x,y). This replaces the tree by two subtrees.

9

Identify the vertices in each of these subtrees.

3. Find an edge (u,v) connecting them.

When we add an edge (u,v) to the graph, the forest remains unchanged if edge (u,v)
connects two vertices belonging to the same tree. If (u,v) connects two different trees in
the forest then (u,v) is added to the forest. The edge (u,v) and the two trees connected

by it form a new tree in the forest.

Since our algorithms operate on an ISF we must now maintain the new forest as an
ISF. The actual computational steps are described below. Let (x,y) be the edge to be

deleted from an IST rooted at r.

1.  We assume, without loss of generality, that the direction of edge (x,y) is from x to

y. To delete (x,y) set F}(x)=x. This creates two subtrees, one of which is rooted
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at r and the other at x. This step can be done in constant time using a single pro- F

Cessor.

o

Compute the array F*. By Lemma 2.1 this can be done in O(log n) time using
O(n®) processors. At the end of this step all vertices in the subtree rooted at r will
have r in their last column in F™ and the vertices in the subtree rooted at x will

have x in their last column. We therefore can identify the veriices in the two sub-

trees.

3a. For each vertex i in the subtree rooted at r find an edge (i,j) such that j is in the

subtree rooted at x and j is the minimum among all neighbors of i. This can be

done in O(log n) time by assigning n processors to every vertex.

3b. The edge (u,v) connecting these two subtrees can now be found from the edges
selected in step 3a such that v is the minimum among all j’s belonging to the sub-
tree rooted at x. If no such edge exists then deletion of edge (x,y) has disconnected

the tree to which it belonged, creating two ISTs, one for each component.

4. If the edge (u,v) does exist then add it to the forest connecting the two subtrees
created in step 1. In order to maintain the new tree thus formed as an inverted

tree, we proceed as follows.

Assume, without loss of generality, that u is in the subtree rooted at x and v is in
the subtree rooted at r. Now orient the edge (u,v) from u to v. To do so set
- F!(u)=v. In step 2 we found the path from vertex v to x. Reverse the directions
of the edges on the directed path {v—x] in the old inverted tree. For instance, if
the directed edge <a,b> was on the directed path [v—x] then set F!(b)=a. This

5 path can have at most n edges and hence the reversal can be done in constant time

USing n processors.
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5. In order to update the function R,, compute F*. The last column of F* determines

the new set of connected components. This step can be done in O(log n) time using

O(n®) processors.

The computational steps to update ISF when an edge (u,v) is added to the graph
connecting two ISTs in the forest are the same as steps 4 and 5 of the edge deletion
algorithm. The array F* is computed at the end of step 5. After the computation, the

last column of F* completely determines the function R..

Vertex Update Algorithm

The vertex update problem involves reconstructing the ISF after a vertex has been
deleted or inserted into the underlying graph. Our approach to the vertex insertion
problem is a generalization of the edge insertion algorithm, where all the new edges
added to the graph are incident on the new vertex. The other case of updating the ISF
when a vertex is deleted from it appears difficult to handle. For instance, if one of the
ISTs in the forest is in the form of a star (that is, there exists a vertex on which all the
edges in the tree are incident), the deletion of such a vertex deletes all the edges in the
tree. Updating the ISF then requires reconstructing that particular tree all over again

and this takes O(log?n) time.

In order to update the ISF after a new vertex has been inserted into the underlying
graph we select a new edge for each component that connects it to the new vertex. We
assign directions to new edges entering the forest and re-orient some of the old edges in

the forest. The computational steps are as follows.

Let z be the new vertex inserted into the graph.
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Compute the array F*. The last column of F* identifies the vertices in the con-
nected components of the graph. This can be done in O(log n) time using O(n?%)

processors.

Identify the multiple edges incident on each component that are brought in by the
vertex z. Select an edge (w,z) for each connected component such that w is the
minimum among the vertices that have now become adjacent to the vertex z. This
selection can be done as follows. Define a vector of length n for each connected
component identified by the root of the corresponding IST. Now assign a processor
to each new edge (v,z). This processor marks the vt location in a vector defined
for the component to which the vertex v belongs. This marking takes constant
time and uses at most n processors. Now assign n processors to each vector and
select a minimum vertex among the vertices that are marked. This step requires

O(log n) time and uses O(n?) processors.

Let ry, ry . .., 1y be the roots of the k trees in the forest that are now connected
to z. Let wy, wy, ..., Wi be the vertices in these trees that are selected in step 2.
The array F* computed in step 1 contains the paths from w, to ry , wp to 1y ,...,Wy
to ry. Reverse the directions of all the edges on these paths. Next orient all the
edges (wy,z), (Wa,2),..., (Wi,2) towards z. Thus z becomes the root of the new
inverted tree formed by k trees in the forest and the vertex z. Reversal of the

edges can be done in constant time using O(n) processors.

Compute the array F*. Again the last column of F* completely determines the sets

of vertices in the connected components of the new graph.

This completes the description of our algorithms to reconstruct the new ISF after a

minor change has been made to the graph. This reconstruction requires O(log n) time

'i':f."—-‘l
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and uses O(n?) processors.

The inverted spanning forest (tree) appears to be a very useful data structure to
store the information regar .rg the connectivity of the graph. Several other graph pro-
perties can be recomputed once the ISF for a new graph is reconstructed. This enables

us to develop efficient algorithms for updating these properties. For instance, we can

X

E compute the new set of fundamental cycles for the modified graph. Note that every
i edge not in the tree induces a fundamental cycle in the tree. In order to recompute the
F set of fundamental cycles we proceed as follows.

- 1. Reconstruct the IST. Compute the array F* and determine the LCA; for every pair

of vertices in the graph. Let u be the LCA of the vertex pair (v,w). LCA computa-

tion can be done in O(log n) time using O(n?) processors. (See Section 2.)

1

The fundamental cycle induced by the edge (v,w) consists of paths {v—u| and
[u—w] in the tree and the edge (v,w). These paths can be determined using the

rows for the vertices v and w in the array F*.

In the next section we show that the IST can be used to update bridges and

bridge-connected components of an undirected and connected graph.

4. Bridges and Bridge-Connected Components

In this section we describe incremental algorithms for finding the bridges of an
undirected graph after a change has been made to the graph. Assume, without loss of
generality, that the undirected graph is connected. Tsin and Chin [12] have described
an O(log®n) algorithm for finding all the bridges in a connected undirected graph on a

PRAM. Our update algorithms require O(log n) time and use O(n®) processors.
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The algorithms presented in this section depend on a function HLCA:V—V which

was first defined in [12] as follows. (H stands for highest.)

Definition: Let G=(V,E) be an undirected graph and T=(V,E' ) be its IST and u e V.
HLCA(u) is a vertex nearest to the root of T such that it is an LCA(u,v), where (u,v) is

an edge not in T.

The computation of the function HLCA involves numbering the vertices in T in
preorder. Recently Tarjan and Vishkin [11] have described a novel algorithm to com-
pute tree functions which include preorder numbering. Their algorithm takes O(log n)
time and uses n processors. Let pmax({u) and pmin(u) denote a vertex that has max-
imum and minimum preorder number among the neighbors of u respectively. The func-
tions pmax and pmin can be computed in O(log n) time using n processors per vertex,
since it involves finding a maximum and a minimum of at most n numbers for each ver-
tex. Let vertex v be pmax(u) and vertex w be pmin(u). Then HLCA(u) is either the
vertex LCA(u,v) or the vertex LCA(u,w) depending upon whichever vertex is nearer to

the root of T. We therefore have the following lemma.

Lemma 4.1: Let T=(V,E’) be an IST of G with vertices labeled in preorder. Then

HLCA(u) for all u in V can be determined in O(log n) time using O{n?) processors.

In order to determine the bridges of a graph the following characterization of

bridges is useful.

Lemma 4.2: If an edge in a graph G is a bridge then it belongs to every spanning tree

of G.

Lemma 4.3: An edge (x,F!(x)) in an IST of G is a " ridge iff for every descendant i of x,
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its adjacent vertices are also descendants of x.

The proofs of these lemmas are obvious. Using the function HLCA and Lemma 4.3,
we can easily determine that an edge (x,F!(x)) is a bridge iff for every descendant i of x,
depth(HLCA(i)) > depth(F(x)). Since each vertex in T can have at most n descen-
dants, assign n processors to every edge in T. Using the results of n such depth com-
parisons performed for every edge, we now can determine if that edge is a bridge or not

in O(log n) time using O(n) processors. We therefore have the following theorem.

Theorem 4.1: Given the HLCA of every vertex in T we can determine all the bridges in

O(log n) time using O(n?) processors.

Edge Update

The best known start-over algorithm [12] for finding all bridges of an undirected
graph first constructs an IST of the graph and then determines the bridges by comput-
ing the HLCA of every vertex in the IST (see Theorem 4.1). The construction of an IST
takes O(log®n) time and the rest of the steps require O(log n) time as described earlier.
Since we can update the IST of the graph in O(log n) time when an edge is deleted or
added or a vertex is inserted into the underlying graph, we therefore can determine the
bridges for the new graph in O(log n) time. However, such a straightforward approach
would test all the edges every time the graph undergoes a change. We now describe
another approach that requires testing of fewer edges. This approach is based on the

following lemma whose proof is straightforward.

Lemma 4.4: An edge in a spanning tree of a graph is a bridge iff it does not lie on any

fundamental cycle.
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. Now consider the case when an edge (u,v) is added to the graph. The edge (u,v)
induces a fundamental cycle in the IST which can be determined using the array F* and
- LCA(u,v). (See Section 3.) All the bridges lying on this cycle now become non-bridges.
-, The computation of F* and LCA for every pair of vertices requires O(log n) time and
uses O(n?) processors. The second step (finding the bridges lying on the cycles and
marking them as non-bridges) can be done in constant time and needs at most n proces-

sors. The IST of the graph remains unchanged.

The other case of determining bridges after an edge has been deleted is handled as
follows. There are two subcases to be considered. In the first subcase we assume that
the deleted edge (x,y) was not in the tree. We then need to recompute the HLCA of all
the vertices lying on the cycle induced by edge (x,y). All the edges lying on this cycle
need to be tested as to whether they have become bridges. As there are at most n ver-

tices and (n-1) tree edges lying on such a cycle, we can do this in O(log n) time using

- O(n®) processors. (See Lemmas 4.1 and 4.3.)
" For the second subcase, assume that the deleted edge was in the IST. Deletion of

the edge (x,y) creates two subtrees. Update the IST using the technique described in
Section 3. If (x,y) was a bridge then the IST becomes an ISF and the rest of the bridges
are not affected. On the other hand if (x,y) was not a bridge then let (u,v) be an edge
selected during an update step that connects the subtrees. Now this case is equivalent
to the previous subcase if we treat (x,y) as a non-tree edge that was deleted. We again

need to test the edges lying on the cycle induced by the edge (x,y) in the new IST.

\ This completes the description of the edge update algorithms for determining all
S

N

o bridges of the modified graph.

Z
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~. Vertex Insertion

v

~ The case of vertex insertion is handled as an extension of the edge insertion prob-

:E lem.

‘ Let z be the new vertex that is added to the graph. Construct the new IST accord-

. ing to the vertex insertion algorithm described in Section 3. If in the new graph z has
only one edge incident on it, then that edge is in the IST and it is a bridge. All the
other bridges remain unchanged. Suppose z has more than one incident edge in the new

graph. There can be at most (n-1) such edges which are incident on z but are not in the

tree. (This is because we just selected one representative edge that connects z to the old

IST.) Compute the array F* and the function LCA for the new IST of the graph. These

(n-1) edges induce (n-1) cycles in the IST. All bridges lying on these cycles become non-

bridges. Since there are at most (n-1) edges on each cycle that are to be tested, we need

R O(n?) processors to mark the bridges as non-bridges in constant time. However, more

'{ than one processor may mark the same edge as a non-bridge, resuiting in a write conflict

-::: (disallowed by our model of computation). Such a write conflict can be avoided using a

' technique due to Hirschberg [5] which marks all the bridges lying on these cycles as non-

o

.— bridges in O(log n) time using O(n?) processors.

Bridge-Connected Components

Once we have updated the bridges of the modified graph, the bridge-connected

components can be determined as follows.

1.  Delete all the bridges from the IST. This creates a forest of ISTs, one for each

component.
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2. Compute the array F*. This takes O(log n) time and uses O(n®) processors. The
last column of F* determines the new bridge-connected components of the modified

graph.

5. Conclusions

Incremental graph algorithms deal with recomputing properties of a graph after an
incremental change has been made to the graph. In this paper we have described paral-
lel algorithms to update connected components and bridges of an undirected graph after
an edge has been inserted or deleted or a new vertex has been inserted in the underlying
graph. Our algorithms require O(log n) time and use O(n®) processors and therefore are
efficient when compared to the start-over algorithms. We have shown that an inverted
tree is a useful data structure for developing algorithms to update properties of an
undirected graph. It would be interesting to explore the applicability of this data struc-

ture to a variety of other graph problems.
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